
CIS 4004: JavaScript – Part 4 Page 1 © Dr. Mark Llewellyn

CIS 4004: Web Based Information Technology

Spring 2013

Introduction To JavaScript – Part 4 – More On Events

Department of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 407-823-2790

 http://www.cs.ucf.edu/courses/cis4004/spr2013

CIS 4004: JavaScript – Part 4 Page 2 © Dr. Mark Llewellyn

 • To make your web application respond to user actions on the

page, you need to do three things:

– Decide which events should be monitored (listened for).

– Set up the event handlers that trigger functions when events

occur.

– Write the functions that provide the appropriate responses to the

events.

• As you’ve seen in the previous JavaScript notes and your

latest project, an event is issued as the result of some specific

activity – usually user activity, but sometimes browser activity

such as a page load – and that you can handle the event with

an event handler.

JavaScript – Part 4 – More On Events

CIS 4004: JavaScript – Part 4 Page 3 © Dr. Mark Llewellyn

 • An event handler is always the name of the event preceded by

“on” ; for example, the event click is handled by the

onclick event handler.

• The event handler causes a function to run, and the function

provides the response to the event.

• The tables on the next tow pages lists some of the more

commonly used event handlers. For a more complete listing

see: http://www.w3.org/TR/DOM-Level-3-Events/

JavaScript – Part 4 – More On Events

http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/DOM-Level-3-Events/

CIS 4004: JavaScript – Part 4 Page 4 © Dr. Mark Llewellyn

JavaScript – Part 4 – More On Events

Event Category Event Triggered When… Event Handler

Browser Events Page completes loading onload

Page is removed from browser window onunload

JavaScript throws an error onerror

Mouse Events User clicks over an element onclick

User double-clicks over an element obdblclick

The mouse button is pressed down over an

element

onmousedown

The mouse button is released over an element onmouseup

The mouse pointer moves onto an element onmouseover

The mouse pointer leaves an element onmouseout

CIS 4004: JavaScript – Part 4 Page 5 © Dr. Mark Llewellyn

JavaScript – Part 4 – More On Events

Event Category Event Triggered When… Event Handler

Keyboard Events A key is pressed onkeydown

A key is released onkeyup

A key is pressed and released onkeypress

Form Events The element receives focus onfocus

The element loses focus onblur

The user selects type in text or text area field onselect

User submits a form onsubmit

User resets a form onreset

Field loses focus and content has changed

since receiving focus

onchange

CIS 4004: JavaScript – Part 4 Page 6 © Dr. Mark Llewellyn

 • An event handler can be utilized inline by attaching the event

handler directly to an element, such as:

 <input type=“text” onblur=“doValidate()” />

 In this case, a form text field has the JavaScript function doValidate()

associated with its blur event – the function will be called when the user

moves the cursor out of the field by pressing Tab or clicks elsewhere. The

function could then check if the user typed something in the field or not.

• While inline event handlers have been used for a number of years,

they are not ideal as they mix the HTML and the JavaScript, and

these should be separate. In a modern web application – in the

interests of accessibility, maintainability, and reliability – you

want to keep JavaScript and CSS out of your HTML markup.

Inline Event Handlers

CIS 4004: JavaScript – Part 4 Page 7 © Dr. Mark Llewellyn

• The example below illustrates the way that we’ve mostly thus

far have utilized the event handlers in our JavaScript examples.

 var clickableImage = document.getElementById(“dog_pic”);

 clickableImage.onclick = showLargeImage;

• In this example, first the object representing the HTML element

with the id = “ dog_pic ” is assigned to the variable

clickableImage. The event handler onclick is

assigned as a property of the object, using a function name as

the onclick property ’ s value. The function

showLargeImage will run when the user click on the

element with the id = “dog_pic”.

The Handler As An Object Property

CIS 4004: JavaScript – Part 4 Page 8 © Dr. Mark Llewellyn

 • The technique shown on the previous page has the desirable

property of keeping the JavaScript out of the markup since this

would appear only in an external JavaScript file and not in the

markup.

• However, there are a couple of rather serious drawbacks to this

approach.

• First, only one event at a time can be assigned using this

technique, because only one value can exist for a property at

any given time. You can’ t assign another event to the
onclick property without overwriting this one, and for the

same reason, another event that was previously assigned is

overridden by this one.

The Handler As An Object Property

CIS 4004: JavaScript – Part 4 Page 9 © Dr. Mark Llewellyn

 • Second, when the user click on this element and the function is

called, the function has to be hard-coded with the name of the

object so that it knows which element to work on.

 function showLargeImage() {

 thePicture = document.getElementById(“dog_pic”);

 //do something with the picture

 }

• If you change the object that is the source of the event, you will

also need to modify the function.

The Handler As An Object Property

CIS 4004: JavaScript – Part 4 Page 10 © Dr. Mark Llewellyn

• For the two reasons just explained, the “handler as an object

property” technique is suitable for use only when you just want

to assign one event to one object, such as running an initial

onload function once the page is first loaded.

• This technique does not really provide a robust solution for use

throughout a RIA (Rich Interface Application, i.e. web pages

with user interaction often incorporating AJAX – later this

semester), where events commonly get assigned and removed

from objects as the application runs.

• In almost every such case, the best way to manage events is to

use event listeners.

The Handler As An Object Property

CIS 4004: JavaScript – Part 4 Page 11 © Dr. Mark Llewellyn

• Event listeners were introduced with the DOM model

and provide comprehensive event registration.

• An event listener does what its name suggests: After

being attached to an object (a node in the DOM), it

then listens patiently for its event to occur. When it

“hears” its event, it then calls its associated function in

the same manner as the “ handler as an object

property” method but with two important distinctions.

Event Listeners

CIS 4004: JavaScript – Part 4 Page 12 © Dr. Mark Llewellyn

 • First, an event listener passes an event object containing

information about its triggering event to the function it calls.

• Within the function, you can read this object’s properties to

determine the target element, the type of event that occurred –

such as click, focus, mousedown – and other details about

the event.

• This capability can reduce coding considerably, because you

can write very flexible functions for key tasks, such as handling

clicks, that provide variations in the response depending on the

calling object and triggering event. Otherwise, you would have

to write a separate, and probably very similar, function for

every type of event you need to handle.

Event Listeners

CIS 4004: JavaScript – Part 4 Page 13 © Dr. Mark Llewellyn

 • Second, you can attach multiple event listeners to a single

object.

• As a result, you don’t have to worry when adding one listener

that you are overwriting another that was added earlier, as you

would when assigning an event as an object property.

• Both W3C-compliant browsers and Microsoft browsers enable

event handlers, they differ in how those handlers are attached to

element and in the way they provide access to the event object.

• We’ll focus on the W3C approach, which will be the de facto

standard in the future. I’ll show you both techniques as well as

a work around that will enable the JavaScript to determine

which browser the user is using.

Event Listeners

CIS 4004: JavaScript – Part 4 Page 14 © Dr. Mark Llewellyn

• The W3C technique for adding/registering an event

handler is the method addEventListener()

which takes three arguments:

– The first is the name of the event for which you are

registering the handler.

– The second is the function that will be called to handle the

event.

– The third is either “true” or “false”. Typically, this will be

false. When true is used this relates to event bubbling

(covered later).

• An example is shown on the next page.

Event Listeners – W3C Technique

CIS 4004: JavaScript – Part 4 Page 15 © Dr. Mark Llewellyn

 • Example:

emailField=document.getElementById(“email”);

emailField.addEventListener(‘focus’, doHighlight, false);

email.Field.addEventListener(‘blur’, doValidate, false);

• The function doHighlight would be called when the cursor

moves into the field, and the function doValidate would be

called when the cursor moves out of the field.

• As many event listeners as you would like can be attached to an

object in this fashion.

• The next two pages illustrate simple event handler registration.

Event Listeners – W3C Technique

Get the object

Add a focus listener

Add a blur listener

CIS 4004: JavaScript – Part 4 Page 16 © Dr. Mark Llewellyn

The HTML5 markup

CIS 4004: JavaScript – Part 4 Page 17 © Dr. Mark Llewellyn

The JavaScript

CIS 4004: JavaScript – Part 4 Page 18 © Dr. Mark Llewellyn

 • Event listeners can be removed (unregistered) in a similar

manner by using the removeEventListener method.

• Example:

emailField=document.getElementById(“email”);

emailField.removeEventListener(‘focus’, doHighlight, false);

email.Field.removeEventListener(‘blur’, doValidate, false);

Event Listeners – W3C Technique

Get the object

Remove the focus listener

Remove the blur listener

CIS 4004: JavaScript – Part 4 Page 19 © Dr. Mark Llewellyn

• Microsoft’s event registration model is slightly different than

the W3C technique.

W3C: emailField.addEventListener(‘focus’, doHighlight, false);

Microsoft: emailField.attachEvent(‘onfocus’, doHighlight);

• Similary, Microsoft’s event listener removal is also slightly

different than the W3C technique.

W3C: emailField.removeEventListener(‘focus’, doHighlight, false);

Microsoft: emailField.detachEvent(‘onfocus’, doHighlight);

Event Listeners – Microsoft Technique

CIS 4004: JavaScript – Part 4 Page 20 © Dr. Mark Llewellyn

 • For the time being, at least until IE either disappears or

becomes W3C-compliant (not likely!), you will need to write

your JavaScript to add event listeners in the correct format for

the browser being used by your visitor.

• Fortunately, John Resig (the guy who developed jQuery) has

written a couple of helper functions that will allow your

JavaScript to determine the correct event model to use.

• The next two pages illustrate these two functions and I will also

place them on the course web page for you to download and

use. From a JavaScript perspective the functions are a little

complex, so don’t worry if you don’t fully understand how they

work. Remember that this is the beauty of “black boxing”.

Adding Event Listeners

CIS 4004: JavaScript – Part 4 Page 21 © Dr. Mark Llewellyn

John Resig’s addEvent Helper Function

function addEvent(obj, type, fn) {

 if (obj.attachEvent) {

 obj['e'+type+fn] = fn;

 obj[type+fn] = function(){obj['e'+type+fn] (

window.event);}

 obj.attachEvent('on'+type, obj[type+fn]);

 } else

 obj.addEventListener(type, fn, false);

}

CIS 4004: JavaScript – Part 4 Page 22 © Dr. Mark Llewellyn

John Resig’s removeEvent Helper Function

function removeEvent(obj, type, fn) {

 if (obj.detachEvent) {

 obj['e'+type+fn] = fn;

 obj.detachEvent('on'+type, obj[type+fn]);

 obj[type+fn] = null;

 } else

 obj.removeListener(type, fn, false);

}

CIS 4004: JavaScript – Part 4 Page 23 © Dr. Mark Llewellyn

 • Black boxing means that you don’t need to understand how

John Resig’s functions work, just know what they do and how

to use them.

• If you want to add an event listener to the email field form in

the previous example, all you would need to do is call the

addEvent helper function like this:

 addEvent(emailField, ‘focus’, doHighLight);

• The three arguments are the element, the event, and the

function to call when the element receives that event. Resig’s

function then takes care of formatting the event registration

appropriately for the browser on which it is running. I’ll use

Resig’s functions from this point on.

Using John Resig’s Helper Functions

CIS 4004: JavaScript – Part 4 Page 24 © Dr. Mark Llewellyn

 • Typically, the first thing you want JavaScript to do is set up the

initial state of the page so its ready for use by the visitor.

• A very common part of this initialization process is to attach event

listeners to the elements in the DOM that will respond to user

actions, and you cannot do that until the DOM has loaded into the

browser.

• For example, you might want to attach blur events to the text

fields of a form so you can detect when the user click or tabs away

from them. You can then immediately validate the text the user

entered.

• To help you ensure that you are working with a DOM that actually

exists, a load event is issued when the page is entirely loaded.

The First Event: load

CIS 4004: JavaScript – Part 4 Page 25 © Dr. Mark Llewellyn

 • You can use the onload event handler to detect this event and

trigger the JavaScript functions that will set up the page state for

the user.

• The example on the next page illustrates this technique.

• Notice that in the JavaScript that the first line calls the init

function; there are no parentheses after the init function name.

You would normally add parentheses after a function name

because you would want the function to run immediately at that

point in the code.

• However, because you are setting up an event that will call the

function at a later time, you don’t do that here.

The First Event: load

CIS 4004: JavaScript – Part 4 Page 26 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 4 Page 27 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 4 Page 28 © Dr. Mark Llewellyn

 • If you wrote window.onload= init(); the function would

run immediately (setting the onload property to the result of the

function) and not wait for the page load event to be sent.

• By omitting the parentheses when you assign the init function to

the onload property, the function does not run immediately,

instead, it runs when the load event occurs after the page is fully

loaded.

• Also note that onload is a method of the window object, so you

must always precede it with window, for it to work.

• Note too, that any JavaScript statement not enclosed in a function

and just “loose” on the page runs as soon as it loads. For this

reason, it’s very unusual to place any JavaScript except the onload

event assignment outside of a function.

The First Event: load

CIS 4004: JavaScript – Part 4 Page 29 © Dr. Mark Llewellyn

 • After all of the previous discussion, we’ll now look at a simple

example of event listeners that are added to an element when the

page loads.

• In this example case, when the onload event handler calls the

init function, it will add event listeners to a text field.

• As a result of the functions called by these event listeners, the text

field will highlight (its background will be set to green) when the

field receives focus; it will unhighlight (the default white

background be restored) when the focus is removed.

• We’ll develop this example in a systematic manner which might

help you with the techniques you can use in developing your own

projects.

Adding Event Listeners on Page Load

CIS 4004: JavaScript – Part 4 Page 30 © Dr. Mark Llewellyn

 • Step 1 in the development process is to ensure that the load event is

triggering the function that will set up the event listeners.

• The markup for this example is shown on the next page, but the only

significant element is the form input field.

• Notice that all I did was set up the onload event to trigger the

function setUpFieldEvents. In order to ensure that the

function is being called properly, I just used a JavaScript alert box to

display. So I now know that the function is being triggered properly

by the onload event.

• As with some of the other examples, I’m including the JavaScript in

the markup file for ease of viewing here…normally it would be

external to the markup.

Adding Event Listeners on Page Load

CIS 4004: JavaScript – Part 4 Page 31 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 4 Page 32 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 4 Page 33 © Dr. Mark Llewellyn

 • In step 2 we’ll actually add the code to the setUpFieldEvents

function that will add the event listeners. We’ll use Resig’s

addEvent helper function to ensure that our page will render

properly in any browser.

• The markup is shown on the next page.

Adding Event Listeners on Page Load

CIS 4004: JavaScript – Part 4 Page 34 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 4 Page 35 © Dr. Mark Llewellyn

page loads, user clicks in text

field, alert has displayed –

text field has highlight applied

page loads, user

clicks in text field

CIS 4004: JavaScript – Part 4 Page 36 © Dr. Mark Llewellyn

user clicks outside of

text field, alert displays

indicating loss of focus.

user clicks ok in alert –

text field highlight is

removed

CIS 4004: JavaScript – Part 4 Page 37 © Dr. Mark Llewellyn

 • In step 3 we’ll replace the alert code in the functions with the actual

highlighting that we originally intended.

• The markup is shown on the next page.

Adding Event Listeners on Page Load

CIS 4004: JavaScript – Part 4 Page 38 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 4 Page 39 © Dr. Mark Llewellyn

user clicks in text field –

field is in focus and

thus highlighted

user clicks outside the

text field – field loses

focus and highlighting

is removed

